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Vapour pressures of organic materials can be predicted to
high levels of accuracy using cohesive energies and solubility
parameters derived from molecular dynamics simulations
that use good forcefields. It is found that over 90% of the
correlation with vapour pressure is accounted for by a single
cross term involving the product of either the molecular
weight or molar volume of a molecule and its cohesive
energy density.

Introduction
Concerns regarding the environmental impact of chemicals
like volatile organics have meant that prediction of important
physico-chemical properties like vapour pressure continues to
receive wide attention. While some earlier methods depend on
one or more experimental parameters like boiling point (BP) as
descriptors, the more recent ones predict solely from molecular
structure.1 The field has advanced from predicting vapour
pressure from purely thermodynamic considerations to using
structure–property relationships and concomitantly from simple
equations to neural network models. Some recent developments2

have been to predict vapour pressures from quantum mechanical
descriptors and to predict the temperature dependence of vapour
pressure starting from molecular structure. Amongst molecular
simulation methods,3 Monte Carlo techniques have been used in
the study of liquid–vapour equilibria and prediction of physico-
chemical properties.4

Here a QSAR/QSPR approach to predicting vapour pres-
sures has been pursued, wherein some of the descriptors in
the models are extracted from molecular dynamics (MD)
simulations. The descriptors chosen from MD are such that they
are chemically intuitive to have a bearing on vapour pressure.
Additionally, model building has been restricted to finding
simple equations with fewer terms such that the understanding
from the model to physical–chemical principles is easy and
immediate.

In physical chemistry, it is well known that within a Clausius–
Clapeyron framework at a given temperature, the vapour
pressure5 of a substance (assuming ideality) is related to its
enthalpy of vapourisation (DHvap). This enthalpy describes the
cohesive energy density (Ecoh) of the material, which in turn is
the square of the solubility parameter (SP) of a material (see
eqns. (1–3)).

ln(vp) = B − DHvap/RT (1)

Ecoh = (DHvap − RT)/V m (2)

SP = SQRT (Ecoh) (3)

In this paper we have tried to use the solubility parameter of a
material as a descriptor in the prediction of vapour pressure.

The literature regarding solubility parameters is considerable.
Foremost is an extensive review of this area provided by Barton’s
Handbook.6 Solubility parameters were first defined to explain
the relative miscibility of solvents by Joel H. Hildebrand7 who
proposed that the solvency behaviour of non-electrolytes is best

described by the square root of the internal pressure or the
cohesive energy density of the pure substances. Over the years
SPs began to be described in terms of various contributions;
one example is for the cohesive energy to be described by polar,
dispersive and hydrogen bonding effects, as given in Hansen’s
parameters.8

Solubility parameters of small molecules and polymers can
be approximately calculated from the molecular structure of the
molecule and the monomer, respectively. These methods8,9 use
contributions from various groups in the molecule to arrive at
the value. However they are approximate and are not always
accurate for novel combinations of different functional groups.

In this paper, solubility parameters are calculated using
molecular dynamics simulations and modern forcefields. The
advantages of this method are that because the description
of the system is fully atomistic, specific interactions, such
as hydrogen bonding, molecule and chain structure effects
such as chirality and tacticity respectively are easily included.
Furthermore, since SPs are calculated for the temperature at
which the simulation is performed, the temperature dependence
of SPs can be studied. It has recently been found that simulations
on bulk systems of moderate size using systematically-derived
class II forcefields such as COMPASS10 are capable of making
predictions of solubility parameters, with an accuracy that
compares favourably with experimentally derived values.

Methods
Solubility parameters of the molecules under consideration
were calculated using molecular dynamics simulations and
COMPASS forcefields using the software DISCOVER by
Accelrys Inc.11 All structure–activity and structure–property
relationships were obtained using Cerius2 software.11

Cohesive energy is defined as the increase in energy per mole
of a material if all intermolecular forces are eliminated. The
cohesive energy density (CED) corresponds to the cohesive
energy per unit volume. CED is simply the difference in energy
between a fully periodic, bulk (b) system and one where each of
the components is in isolation i.e. in the gas (g) phase (Ecoh =
Eb − Eg) which is easily calculated from molecular dynamics
simulations. The solubility parameter is given by the square root
of the cohesive energy density (eqn. (3)). The calculation details
given next are very similar to the ones used to predict bulk
density.12

Initially an amorphous cell containing many copies of the
molecule (approximately 1500 atoms in the box) is built to a
target density. After some equilibration dynamics, a large (100
picosecond) NPT simulation (P = 0.0) is run where the number
of particles (N), the pressure (P) and temperature (T) are kept
constant, using Berendsen’s pressure control algorithm13 and
applying Andersen’s stochastic collision temperature control
method.14 This enables the simulated system to ‘find’ its own
density, and from the average volume a further large NVT (V =
volume) simulation is performed. After sufficient equilibration
steps, trajectories are collected at appropriate time intervals.D
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From these trajectories, the cohesive energy density and solu-
bility parameter are calculated.

Other descriptors15 that have been used in building the
QSAR/QSPR are AlogP (calculated octanol–water partition
coefficient), molecular weight (MW), molecular refractivity
(MolRef), atomic polarisabilities (Apol), number of rotational
bonds (Rotlbonds), number of h-bond donors or HBD (e.g. R–
NH, R–OH etc.), number of h-bond acceptors or HBA (e.g.
C=O, R–O–R, R–N–R etc.), free energies of solvation in water
(Fh2o) and octanol (Foct).

Results and discussion
A starting list of 22 molecules was used in the training set for
the prediction of vapour pressure. The vapour pressure data at
25 ◦C comes mainly from the CRC Handbook.16 Table 1 gives
a list of these molecules and some of the descriptors used in the
model building.

As can be seen the table covers a broad spread of vapour
pressures (∼5 orders of magnitude) and represents a wide
spectrum of molecules having ring structures and straight chains
that include aldehydes, alcohols etc.

Before model building using a genetic function algorithm11

(GFA) was performed, simple linear regression models relating
vapour pressure to one or more of the descriptors were looked
at. This is shown in Table 2.

Table 2 shows that while molecular weight, MolRef and
the solubility parameter have some bearing on the vapour

Table 1 Molecules used in the training set. Vapour pressure (vp) in lm

Molecule log(vp) MW AlogP SP

a-Ionone 1.20 192.30 3.68 17.20
Anethole 1.76 148.20 2.79 19.86
Benzyl salicylate −0.82 228.25 3.27 21.19
Benzophenone 0.00 182.22 3.27 21.32
Cinnamic alcohol 0.62 134.18 2.04 23.97
Coumarin 0.48 146.15 1.94 22.64
Hexyl cinnamic aldehyde −0.15 216.32 4.00 18.94
Indole 1.07 117.15 1.77 25.11
Limonene 3.15 136.24 2.94 17.44
Benzyl acetate 2.08 136.15 1.55 20.99
Menthol 1.73 156.27 2.78 18.97
Benzaldehyde 3.04 106.12 1.72 22.12
a-Pinine 3.64 136.24 2.80 15.83
C7-aldehyde 3.53 114.19 1.63 18.06
C9-aldehyde 2.41 142.24 2.43 17.83
Anisole 3.52 108.14 1.79 19.77
Citronellal 2.36 154.25 2.25 17.90
Citronellol 1.18 156.27 2.75 20.02
Eucalyptol 3.22 154.25 1.83 17.33
Methyl amyl ketone 3.59 114.19 2.20 17.94
Methyl hexyl ketone 2.88 128.21 2.59 17.77
Vanillin −0.77 152.15 1.19 24.72

a MW = molecular weight, AlogP from Cerius2 software11, SP from
molecular dynamics simulations in MPa0.5 or ((J cm−3)0.5)

Table 2 Simple equations of log(vp) with parameters and cross terms

x = ? y = mx + C R2

MW y = −0.03x + 6.50 0.50
AlogP y = −0.13x + 2.19 0.08
SP y = −0.35x + 8.78 0.39
MolRef y = −0.83x + 5.60 0.35
MW*SP y = −0.0019x + 7.39 0.90
SP*SP y = −0.0084x + 5.17 0.39
MW*SP*SP y = −0.00007x + 6.13 0.93

a y = log(vp)

pressure, cross terms have a much larger impact. Indeed the
term MW*SP*SP shows very good correlation (R2 ∼0.93).

This finding was made use of in building more complex and
complete models using a GFA. Here, apart from descriptors
given in Table 1, cross terms like MW*SP*SP and other
parameters such as MolRef, Fh2o and Foct were used in the
model building. Many models were obtained. Given below is a
simple model with an R2 of 0.96 for the 22 molecules in Table 1.

log(vp) = a1 − a2*MW*SP*SP − a3*MolRef (4)

(where a1 = 6.9, a2 = 0.000067 and a3 = 0.025).
This model was tested against 40 other molecules17 (open

triangles in the graph of Fig. 1) which include many simple
organic molecules. The results are shown in Fig. 1.

Fig. 1 Predicted vs. actual log(vp) of training set (squares) and test set
(open triangles). R2 ∼0.95 using eqn. (4).

From the figure it is clear that eqn. (4) is an excellent model for
vapour pressure. In general the ranges for the three constants a1,
a2 and a3 of eqn. (4) are: a1 ∼6.5–7.5, a2 ∼0.000055–0.000065
and a3 ∼0.020–0.040. For example the R2 for all the data in Fig. 1
goes up to 0.97 if a1 = 7.16, a2 = 0.000057 and a3 = 0.036.

Other models for log(vp) obtained for all data given in Fig. 1
using a GFA are shown below. Adding other terms improves the
R2, but might also result in overfitting the model.

log(vp) = 12.61 − 0.11*MolRef − 0.27*SP (R2 ∼0.94) (5)

log(vp) = 7.16 − 0.000057*MW*SP*SP
− 0.036*MolRef (R2 ∼0.97) (6)

log(vp) = 8.81 + 0.2*HBA − 0.00005*MW*SP*SP
−0.05*MolRef − 0.08*SP (R2 ∼0.98) (7)

The dependence of the model on MW*SP*SP is looked at
next. Intuitively, the dependence of molecular weight is not
surprising since ‘lighter’ (i.e. low molecular weight) molecules
are expected to evaporate readily and consequently have a
high vapour pressure. However, if the molecules have many
interacting groups they would have a greater cohesive energy
and this would slow down the evaporation and manifest as a
low vapour pressure. Thus the cross term MW*SP*SP captures
not only the size of the molecule but also its interacting ability
and is therefore intimately related to the vapour pressure.

More rigorously, we can see from eqns. (1–3) that by sub-
stituting for DHvap from eqn. (2) into eqn. (1) we get ln(vp)
proportional to V m*Ecoh (or V m*SP*SP). Therefore the term
V m*SP*SP is expected to be as well or better related to log(vp)
than MW*SP*SP. In fact for all the points in Fig. 1, a simple
equation with an R2 of 0.94 relates log(vp) and V m*SP*SP and
is given by

log(vp) = 8.133 − 0.00006*V m*SP*SP (R2 ∼0.94) (8)

V m of course is the molar volume and is related to the molecular
weight (MW) through the density of the material. It is easy
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to see that the term MW*SP*SP was an approximation of
V m*SP*SP. This is reasonable since the density of most organic
materials does not vary a lot. The disadvantage of using V m

in correlations is that molar volumes are a lot more difficult
to compute accurately than molecular weights. However, using
MD simulations12 and an NPT protocol (at P = 0) because the
molecule is allowed to explore different conformational states
one can quite accurately obtain V m.18

Apart from MW*SP*SP or V m*SP*SP, other terms in the
models (eqns. (4–7)) are probably correction terms and add only
marginal improvements. The corrections could occur because
(a) the forcefield used may not be well parameterised for the
molecules under consideration, (b) the Clausius–Clapeyron
equation may not work well for real (non-ideal) systems. A
compressibility factor (Z = PV/nRT) may be involved in eqn.
(1) and (c) the experimental data of vapour pressure may have
been extrapolated and may not be accurate for 25 ◦C.

Next, a comparison is made of vapour pressure relationships
with the term MW*SP*SP using SPs calculated by the molecular
dynamics method (as in this paper) and Hansen’s SPs. The
comparison could not be made for all materials in this paper,
as Hansens’s parameters for such substances are not widely
reported so instead the comparison was done for a list19

that includes common, well known substances whose vapour
pressures differ by almost 9 orders of magnitude.

The following points emerged from this study:
1. The correlation of MW*SP*SP with log(vp) using SPs

obtained by MD (R2 ∼0.89) is better than that obtained using
Hansen’s SP (R2 ∼0.8).

2. The correlation is better at high vapour pressures for
well known common small molecules for both sets of SPs as
forcefield and group contribution terms are well parameterised
for common small systems (and may have used vapour pressure
data in the parameterisation).

3. As the molecules get bigger and more flexible, the corre-
lation using Hansen’s parameters gets worse. In fact for the 7
biggest molecules in the list, the correlation (R2) with Hansen’s
SP is 0.37 while it is 0.81 for SPs from molecular dynamics.

Thus, predictions of vapour pressure using solubility pa-
rameters calculated from group contribution methods are not
consistently good. It was also found from additional studies
made here that using other group contribution methods9 (not
Hansen’s method) and for the kind of molecules looked at here
the best R2 value obtained did not exceed 0.7.

This highlights the importance of the method by which solu-
bility parameters are calculated. Molecular dynamics methods
being more rigorous offer a much better ‘quality’ of parameter.
This quality is of course fully dependent on the forcefield used.
Conversely, forcefield parameters may be improved by checking
how well they predict vapour pressures.

Other types of molecular simulations especially Monte Carlo
methods using specialised protocols and methodologies3 (like
Gibbs ensemble or Widom particle insertion) have been used
to study liquid–vapour equilibrium and predict important bulk
properties.4 While good results have been obtained for model
systems and specific classes of compounds, the accuracy of the
predictions have largely been dependent on the size and density
of the system studied, and more importantly on the potential
functions describing the molecular interactions of the systems.
Though a promising route for calculating bulk properties,
considerable work may need to be invested in (a) tailoring the
implementation of these methodologies and protocols according
to the type of system studied (b) improving the potential
functions describing interactions; before such simulations can
be routinely and universally applied to bigger and more complex
molecules.

The downside of MD methods used here is the computational
time required for each calculation (roughly 2 h on a R12000 pro-
cessor for a small molecule). However, since chirality, tacticity
and conformational variability can be fully accounted for in

MD, bulk parameters like density12 and solubility parameters
can be calculated to a high degree of accuracy. Moreover,
since molecular dynamics is performed at a given temperature,
the temperature dependence of parameters is also expected to
be reproduced. Indeed initial work in this area suggests that
this a promising route for calculating quite accurately vapour
pressures at different temperatures and the boiling point.

Conclusions
In this paper, it has been shown that the vapour pressure of a
substance at 25 ◦C can be accurately predicted from solubility
parameters obtained from molecular dynamics simulations. It
is found that a single cross term that is the product of either
the molar volume or molecular weight of the substance and the
square of the solubility parameters (V m*SP*SP or MW*SP*SP),
dominates the equation for vapour pressure. The solubility
parameter method to predict vapour pressure is especially
appealing as it is sensible in physical chemical terms and can
be understood by the underlying theory for liquid–vapour
equilibria within the Clausius–Clapeyron framework, lending
confidence in the models. The models that have been built being
representative of the data set from which they were derived
will probably work best for small molecules, i.e. small organic
molecules (MW <500) containing mostly carbon and oxygen
atoms. However, the fact that the models can be explained in
physical–chemical terms suggests a wider applicability, though
caution may need to be exercised. Finally, given the slight
uncertainties of experimental vapour pressure data, a correlation
consistently over 0.9, and predictions as good as those shown
in eqns. (4–8), the models for vapour pressure from parameters
derived from molecular dynamics simulations can be considered
to be very good indeed.
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